1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
from numpy import * import numpy as np import theano import theano.tensor as T import time
class Linear_Reg(object): def __init__(self,x): self.w = theano.shared(value = 0.0,name = 'w') self.b = theano.shared(value = 0.0,name = 'b') self.y_pred = x * self.w + self.b self.params = [self.w,self.b] def msl(self,y): return T.sum((y - self.y_pred)**2)
class Linear_Reg2(object): def __init__(self,x): self.w = theano.shared(value = np.zeros((1,),dtype=theano.config.floatX),name = 'w') self.b = theano.shared(value = np.zeros((1,),dtype=theano.config.floatX),name = 'b') self.y_pred = x * self.w + self.b self.params = [self.w,self.b] def msl(self,y): return T.sum((y - self.y_pred)**2)
def test_type(): points_x = [1.1,2.2] points_y = [3.3,4.4] X = theano.shared(np.asarray(points_x,dtype=theano.config.floatX),borrow = True) Y = theano.shared(np.asarray(points_y,dtype=theano.config.floatX),borrow = True) x = T.dscalar('x') print x print x.type print X[0] print X[0].type def test_type2(): points_x = [1.1,2.2] points_y = [3.3,4.4] X = theano.shared(np.asarray(points_x,dtype=theano.config.floatX),borrow = True) Y = theano.shared(np.asarray(points_y,dtype=theano.config.floatX),borrow = True) x = T.dvector('x') print x print x.type print X[0:2] print X[0:2].type
def run_model1(mode): """ [w,b be scalar] mode = scalar(), set mini_batch_size = 1 mode = vector(m,), reshape X,Y to vector mode = matrix(m,n), reshape X,Y to matrix """ eta = 0.000001 epochs = 1000 points = genfromtxt("data.csv", delimiter=",") points_x = points[:,0] points_y = points[:,1] N = points_x.shape[0] if mode == "scalar": mini_batch_size = 1 X = theano.shared(np.asarray(points_x,dtype=theano.config.floatX),borrow = True) Y = theano.shared(np.asarray(points_y,dtype=theano.config.floatX),borrow = True) x = T.dscalar('tx') y = T.dscalar('ty') elif mode == "vector": mini_batch_size = 5 X = theano.shared(np.asarray(points_x,dtype=theano.config.floatX),borrow = True) Y = theano.shared(np.asarray(points_y,dtype=theano.config.floatX),borrow = True) x = T.dvector('tx') y = T.dvector('ty') elif mode == "matrix": mini_batch_size = 5 X = theano.shared(np.asarray(points_x,dtype=theano.config.floatX).reshape(N,1),borrow = True) Y = theano.shared(np.asarray(points_y,dtype=theano.config.floatX).reshape(N,1),borrow = True) x = T.dmatrix('tx') y = T.dmatrix('ty') num_batches = N/mini_batch_size reg = Linear_Reg(x = x) cost = reg.msl(y)
w_g = T.grad(cost = cost, wrt = reg.w) b_g = T.grad(cost = cost, wrt = reg.b)
updates=[(reg.w, reg.w - eta * w_g), (reg.b, reg.b - eta * b_g)]
train_model = theano.function(inputs=[x,y], outputs = cost, updates = updates, )
cost_t = 0.0 costs = [] start_time = time.clock()
for epoch in xrange(epochs): cost_l = [] for index in range(num_batches): if mode == "scalar": x = X.get_value()[index] y = Y.get_value()[index] else: x = X.get_value()[index*mini_batch_size:(index+1)*mini_batch_size] y = Y.get_value()[index*mini_batch_size:(index+1)*mini_batch_size] cost_l.append( train_model(x,y) )
cost_t = np.mean(cost_l) costs.append(cost_t)
end_time = time.clock() print '\nTotal time is :',end_time -start_time,' s' print 'last cost :',cost_t print 'w value : ',reg.w.get_value() print 'b value : ',reg.b.get_value()
def run_model2(mode): """ [w,b be vector(1,)] mode = scalar(), set mini_batch_size = 1 mode = vector(1,), set mini_batch_size = 1, reshape X,Y to vector mode = matrix(m,1), reshape X,Y to matrix """ eta = 0.000001 epochs = 1000 points = genfromtxt("data.csv", delimiter=",") points_x = points[:,0] points_y = points[:,1] N = points_x.shape[0] if mode == "scalar": mini_batch_size = 1 X = theano.shared(np.asarray(points_x,dtype=theano.config.floatX),borrow = True) Y = theano.shared(np.asarray(points_y,dtype=theano.config.floatX),borrow = True) x = T.dscalar('tx') y = T.dscalar('ty') elif mode == "vector": mini_batch_size = 1 X = theano.shared(np.asarray(points_x,dtype=theano.config.floatX),borrow = True) Y = theano.shared(np.asarray(points_y,dtype=theano.config.floatX),borrow = True) x = T.dvector('tx') y = T.dvector('ty') elif mode == "matrix": mini_batch_size = 5 X = theano.shared(np.asarray(points_x,dtype=theano.config.floatX).reshape(N,1),borrow = True) Y = theano.shared(np.asarray(points_y,dtype=theano.config.floatX).reshape(N,1),borrow = True) x = T.dmatrix('tx') y = T.dmatrix('ty') num_batches = N/mini_batch_size index = T.lscalar() reg = Linear_Reg2(x = x) cost = reg.msl(y)
params = [reg.w,reg.b] grads = T.grad(cost,params) updates = [(param,param-eta*grad) for param,grad in zip(params,grads)] if mode == "scalar": train_model = theano.function(inputs=[index], outputs = cost, updates = updates, givens = {x:X[index], y:Y[index]}) else: train_model = theano.function(inputs=[index], outputs = cost, updates = updates, givens = {x:X[index*mini_batch_size:(index+1)*mini_batch_size], y:Y[index*mini_batch_size:(index+1)*mini_batch_size]})
cost_t = 0.0 costs = [] start_time = time.clock()
for epoch in xrange(epochs): cost_l = [] for index in range(num_batches): cost_l.append( train_model(index) ) cost_t = np.mean(cost_l) costs.append(cost_t)
end_time = time.clock() print '\nTotal time is :',end_time -start_time,' s' print 'last cost :',cost_t print 'w value : ',reg.w.get_value() print 'b value : ',reg.b.get_value()
""" run: Total time is : 2.796644 s last cost : 113.178407322 w value : 1.48497718432 b value : 0.0890071567283
run2: Total time is : 2.127487 s last cost : 113.178407322 w value : [ 1.48497718] b value : [ 0.08900716]
run3: Total time is : 0.480144 s avg cost : 565.419900755 w value : [ 1.48492605] b value : [ 0.08896923] """ def test(): test_type() test_type2() if __name__ == '__main__': run_model2("scalar") run_model2("vector") run_model2("matrix")
|