0%

keras data augmentation

Guide

code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# import the necessary packages
from keras.preprocessing.image import ImageDataGenerator
from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import load_img
import numpy as np
import argparse

from keras_util import *

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to the input image")
ap.add_argument("-o", "--output", required=True,
help="path to output directory to store augmentation examples")
ap.add_argument("-p", "--prefix", type=str, default="image",
help="output filename prefix")
args = vars(ap.parse_args())

# load the input image, convert it to a NumPy array, and then
# reshape it to have an extra dimension
print("[INFO] loading example image...")
target_size = None
#target_size=(224,224)
image = load_img(args["image"], target_size=target_size)
image = img_to_array(image)
image = np.expand_dims(image, axis=0) # 1,h,w,c

# construct the image generator for data augmentation then
# initialize the total number of images generated thus far

# preprocessing_function: The function will run after the image is resized and augmented.
# The function should take one argument:
# one image (Numpy tensor with rank 3),
# and should output a Numpy tensor with the same shape.


# for 1 image --->(424,640,3)--->aug---(424,640,3)--->preprocess_input--->(424,640,3)
# for 1 image --->resize--->(224,224,3)--->aug---(224,224,3)--->preprocess_input--->(224,224,3)
aug = ImageDataGenerator(preprocessing_function=resnet.preprocess_input,
rotation_range=30,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode="nearest")
total = 0

# construct the actual Python generator
print("[INFO] generating images...")
imageGen = aug.flow(image,
batch_size=1,
save_to_dir=args["output"],
save_prefix=args["prefix"],
save_format="png")

next_image = next(imageGen)
print(next_image.shape)
print(next_image[0, :5,:5,0])

# loop over examples from our image data augmentation generator
for image in imageGen:
# increment our counter
total += 1

# if we have reached 10 examples, break from the loop
if total == 10:
break

output

target_size = None:

1 image —>(424,640,3)—>aug—>(424,640,3)—>preprocess_input—>(424,640,3)

target_size = (224,224):

1 image —>resize—>(224,224,3)—>aug—>(224,224,3)—>preprocess_input—>(224,224,3)

Reference

History

  • 20190910: created.