1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
""" network.py ~~~~~~~~~~
A module to implement the stochastic gradient descent learning algorithm for a feedforward neural network. Gradients are calculated using backpropagation. Note that I have focused on making the code simple, easily readable, and easily modifiable. It is not optimized, and omits many desirable features. """
import random
import numpy as np
class Network(object):
def __init__(self, sizes): """The list ``sizes`` contains the number of neurons in the respective layers of the network. For example, if the list was [2, 3, 1] then it would be a three-layer network, with the first layer containing 2 neurons, the second layer 3 neurons, and the third layer 1 neuron. The biases and weights for the network are initialized randomly, using a Gaussian distribution with mean 0, and variance 1. Note that the first layer is assumed to be an input layer, and by convention we won't set any biases for those neurons, since biases are only ever used in computing the outputs from later layers.""" self.num_layers = len(sizes) self.sizes = sizes self.biases = [np.random.randn(y, 1) for y in sizes[1:]] self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]
def feedforward(self, a): """Return the output of the network if ``a`` is input.""" for b, w in zip(self.biases, self.weights): a = sigmoid(np.dot(w, a)+b) return a
def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None): """Train the neural network using mini-batch stochastic gradient descent. The ``training_data`` is a list of tuples ``(x, y)`` representing the training inputs and the desired outputs. The other non-optional parameters are self-explanatory. If ``test_data`` is provided then the network will be evaluated against the test data after each epoch, and partial progress printed out. This is useful for tracking progress, but slows things down substantially.""" if test_data: n_test = len(test_data) n = len(training_data) num_batches = n/mini_batch_size for j in xrange(epochs): random.shuffle(training_data) for k in xrange(0,num_batches): mini_batch = training_data[k*mini_batch_size : (k+1)*mini_batch_size] self.update_mini_batch(mini_batch, eta) if test_data: print "Epoch {0}: {1} / {2}".format(j, self.evaluate(test_data), n_test) else: print "Epoch {0} complete".format(j)
def calculate_sum_derivatives_of_mini_batch(self,mini_batch): """ 计算m个样本的总梯度和。 利用反向传播计算每一个样本(x,y)对应的梯度。 """ nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] for x, y in mini_batch: delta_nabla_b, delta_nabla_w = self.backprop(x, y) nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] return nabla_b,nabla_w def update_mini_batch(self, mini_batch, eta): """Update the network's weights and biases by applying gradient descent using backpropagation to a single mini batch. The "mini_batch" is a list of tuples "(x, y)", and "eta" is the learning rate.""" m = len(mini_batch) nabla_b,nabla_w = self.calculate_sum_derivatives_of_mini_batch(mini_batch) self.weights = [w-(eta/m)*nw for w, nw in zip(self.weights, nabla_w)] self.biases = [b-(eta/m)*nb for b, nb in zip(self.biases, nabla_b)] def backprop(self, x, y): """Return a tuple "(nabla_b, nabla_w)" representing the gradient for the cost function C_x. "nabla_b" and "nabla_w" are layer-by-layer lists of numpy arrays, similar to "self.biases" and "self.weights".""" nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] activation = x activations = [x] zs = [] for b, w in zip(self.biases, self.weights): z = np.dot(w, activation)+b zs.append(z) activation = sigmoid(z) activations.append(activation) l = -1 delta = self.cost_derivative_of_a_L(activations[l], y) * sigmoid_prime(zs[l]) deltas = [delta] for i in xrange(2, self.num_layers): l = -i delta = np.dot(self.weights[l+1].transpose(), deltas[l+1]) * sigmoid_prime(zs[l]) deltas.insert(0,delta) for i in xrange(1, self.num_layers): l = -i nabla_b[l] = deltas[l] nabla_w[l] = np.dot(deltas[l], activations[l-1].transpose()) return (nabla_b, nabla_w)
def evaluate(self, test_data): """Return the number of test inputs for which the neural network outputs the correct result. Note that the neural network's output is assumed to be the index of whichever neuron in the final layer has the highest activation.""" """ l = [0,1,0,0,0,0,0,0,0,0] a = np.array(l).reshape(10,1) np.argmax(a) #输出向量对应的数字1
test_results = [(1,1),(2,2),(3,3),(1,9)] [int(x == y) for (x, y) in test_results] #[1, 1, 1, 0] sum([int(x == y) for (x, y) in test_results]) #3 """ test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data] return sum(int(x == y) for (x, y) in test_results)
def cost_derivative_of_a_L(self, output_activations, y): """Return the vector of partial derivatives \partial C_x / \partial a for the output activations.""" return (output_activations-y)
def sigmoid(z): """The sigmoid function.""" return 1.0/(1.0+np.exp(-z))
def sigmoid_prime(z): """Derivative of the sigmoid function.""" return sigmoid(z)*(1-sigmoid(z))
|