1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
| void octree_search() { srand(1234);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
cloud->width = 1000; cloud->height = 1; cloud->points.resize(cloud->width * cloud->height);
for (size_t i = 0; i < cloud->points.size(); ++i) { cloud->points[i].x = 1024.0f * rand() / (RAND_MAX + 1.0f); cloud->points[i].y = 1024.0f * rand() / (RAND_MAX + 1.0f); cloud->points[i].z = 1024.0f * rand() / (RAND_MAX + 1.0f); }
float resolution = 128.0f;
pcl::octree::OctreePointCloudSearch<pcl::PointXYZ> octree(resolution);
octree.setInputCloud(cloud); octree.addPointsFromInputCloud();
pcl::PointXYZ searchPoint;
searchPoint.x = 1024.0f * rand() / (RAND_MAX + 1.0f); searchPoint.y = 1024.0f * rand() / (RAND_MAX + 1.0f); searchPoint.z = 1024.0f * rand() / (RAND_MAX + 1.0f);
std::vector<int> pointIdxVec;
if (octree.voxelSearch(searchPoint, pointIdxVec)) { std::cout << "Neighbors within voxel search at (" << searchPoint.x << " " << searchPoint.y << " " << searchPoint.z << ")" << std::endl;
for (size_t i = 0; i < pointIdxVec.size(); ++i) std::cout << " " << cloud->points[pointIdxVec[i]].x << " " << cloud->points[pointIdxVec[i]].y << " " << cloud->points[pointIdxVec[i]].z << std::endl; }
int K = 10;
std::vector<int> pointIdxNKNSearch; std::vector<float> pointNKNSquaredDistance;
std::cout << "K nearest neighbor search at (" << searchPoint.x << " " << searchPoint.y << " " << searchPoint.z << ") with K=" << K << std::endl;
if (octree.nearestKSearch(searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0) { for (size_t i = 0; i < pointIdxNKNSearch.size(); ++i) std::cout << " " << cloud->points[pointIdxNKNSearch[i]].x << " " << cloud->points[pointIdxNKNSearch[i]].y << " " << cloud->points[pointIdxNKNSearch[i]].z << " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl; }
std::vector<int> pointIdxRadiusSearch; std::vector<float> pointRadiusSquaredDistance;
float radius = 256.0f * rand() / (RAND_MAX + 1.0f);
std::cout << "Neighbors within radius search at (" << searchPoint.x << " " << searchPoint.y << " " << searchPoint.z << ") with radius=" << radius << std::endl;
if (octree.radiusSearch(searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0) { for (size_t i = 0; i < pointIdxRadiusSearch.size(); ++i) std::cout << " " << cloud->points[pointIdxRadiusSearch[i]].x << " " << cloud->points[pointIdxRadiusSearch[i]].y << " " << cloud->points[pointIdxRadiusSearch[i]].z << " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl; } }
|