Guide
Quick guide with Demo
1 | # install packages |
fix gflags error
- caffe-fast-rcnn/include/caffe/common.hpp
- caffe-fast-rcnn/examples/mnist/convert_mnist_data.cpp
Comment out the ifndef
1 | // #ifndef GFLAGS_GFLAGS_H_ |
Train net with your own data
faster rcnn训练方式有两种
- 一种是交替优化方法(alternating optimization),即训练两个网络,一个是rpn,一个是fast rcnn,总计两个stage,每个stage各训练一次rpn和fast rcnn。
- 另外一种训练方式为近似联合训练(approximate joint training),也称end to end的训练方式,训练过程中只训练一个权重网络,训练速度有可观的提升,而训练精度不变。
1 | # prepare data |
error fixs
error
AttributeError: 'module' object has no attribute 'text_format'
fix
./lib/fast_rcnn/train.py增加一行
import google.protobuf.text_format
training results
AP for aeroplane = 0.6312
AP for bicycle = 0.7069
AP for bird = 0.5836
AP for boat = 0.4471
AP for bottle = 0.3562
AP for bus = 0.6682
AP for car = 0.7569
AP for cat = 0.7249
AP for chair = 0.3844
AP for cow = 0.6152
AP for diningtable = 0.6162
AP for dog = 0.6502
AP for horse = 0.7580
AP for motorbike = 0.7128
AP for person = 0.6744
AP for pottedplant = 0.3358
AP for sheep = 0.5872
AP for sofa = 0.5649
AP for train = 0.7128
AP for tvmonitor = 0.6133
Mean AP = 0.6050
Results:
0.631
0.707
0.584
0.447
0.356
0.668
0.757
0.725
0.384
0.615
0.616
0.650
0.758
0.713
0.674
0.336
0.587
0.565
0.713
0.613
0.605
--------------------------------------------------------------
Results computed with the **unofficial** Python eval code.
Results should be very close to the official MATLAB eval code.
Recompute with `./tools/reval.py --matlab ...` for your paper.
-- Thanks, The Management
--------------------------------------------------------------
real 5m16.906s
user 4m6.179s
sys 1m16.157s
Reference
History
- 20180816: created.