1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
| #include <Eigen/Dense> using namespace Eigen;
void test0() { MatrixXd m(2,2); m(0,0) = 3; m(1,0) = 2.5; m(0,1) = -1; m(1,1) = m(1,0) + m(0,1); cout << "Here is the matrix m:\n" << m << endl;
VectorXd v(2); v(0) = 4; v(1) = v(0) - 1; cout << "Here is the vector v:\n" << v << endl;
Matrix3f m2; m2 << 1, 2, 3, 4, 5, 6, 7, 8, 9; cout << m2 << endl; }
void test1() { Eigen::Matrix2d mat; mat << 1, 2, 3, 4; cout << "Here is mat.sum(): " << mat.sum() << endl; cout << "Here is mat.prod(): " << mat.prod() << endl; cout << "Here is mat.mean(): " << mat.mean() << endl; cout << "Here is mat.minCoeff(): " << mat.minCoeff() << endl; cout << "Here is mat.maxCoeff(): " << mat.maxCoeff() << endl; cout << "Here is mat.trace(): " << mat.trace() << endl; }
void test2() {
VectorXf v(2); MatrixXf m(2,2), n(2,2); v << -1, 2; m << 1,-2, -3,4; cout << "v.squaredNorm() = " << v.squaredNorm() << endl; cout << "v.norm() = " << v.norm() << endl; cout << "v.lpNorm<1>() = " << v.lpNorm<1>() << endl; cout << "v.lpNorm<Infinity>() = " << v.lpNorm<Infinity>() << endl; cout << endl; cout << "m.squaredNorm() = " << m.squaredNorm() << endl; cout << "m.norm() = " << m.norm() << endl; cout << "m.lpNorm<1>() = " << m.lpNorm<1>() << endl; cout << "m.lpNorm<Infinity>() = " << m.lpNorm<Infinity>() << endl;
n << 1,-2, -3,4; cout << "1-norm(n) = " << n.cwiseAbs().colwise().sum().maxCoeff() << " == " << n.colwise().lpNorm<1>().maxCoeff() << endl; cout << "infty-norm(n) = " << n.cwiseAbs().rowwise().sum().maxCoeff() << " == " << n.rowwise().lpNorm<1>().maxCoeff() << endl; }
void test3() { ArrayXXf a(2,2); a << 1,2, 3,4; cout << "(a > 0).all() = " << (a > 0).all() << endl; cout << "(a > 0).any() = " << (a > 0).any() << endl; cout << "(a > 0).count() = " << (a > 0).count() << endl; cout << endl; cout << "(a > 2).all() = " << (a > 2).all() << endl; cout << "(a > 2).any() = " << (a > 2).any() << endl; cout << "(a > 2).count() = " << (a > 2).count() << endl; }
void test4() { Eigen::MatrixXf m(2,2); m << 1, 2, 3, 4;
MatrixXf::Index maxRow, maxCol; float max = m.maxCoeff(&maxRow, &maxCol);
MatrixXf::Index minRow, minCol; float min = m.minCoeff(&minRow, &minCol);
cout << "Max: " << max << ", at: " << maxRow << "," << maxCol << endl; cout << "Min: " << min << ", at: " << minRow << "," << minCol << endl; }
void test5() { Eigen::MatrixXf mat(2,4); mat << 1, 2, 6, 9, 3, 1, 7, 2; std::cout << "Column's maximum: " << std::endl << mat.colwise().maxCoeff() << std::endl;
std::cout << "Row's maximum: " << std::endl << mat.rowwise().maxCoeff() << std::endl; }
void test6() { MatrixXf mat(2,4); mat << 1, 2, 6, 9, 3, 1, 7, 2; MatrixXf::Index maxIndex; float maxSum = mat.colwise().sum().maxCoeff(&maxIndex); std::cout << "Maximum sum at position " << maxIndex << std::endl; std::cout << "The corresponding vector is: " << std::endl; std::cout << mat.col( maxIndex ) << std::endl; std::cout << "And its sum is is: " << maxSum << std::endl; }
void test7() { Eigen::MatrixXf mat(2,4); Eigen::VectorXf v(2); mat << 1, 2, 6, 9, 3, 1, 7, 2; v << 0, 1; mat.colwise() += v; std::cout << "Broadcasting result: " << std::endl; std::cout << mat << std::endl; }
void test8() { Eigen::MatrixXf m(2,4); Eigen::VectorXf v(2); m << 1, 23, 6, 9, 3, 11, 7, 2; v << 2, 3; MatrixXf::Index index; (m.colwise() - v).colwise().squaredNorm().minCoeff(&index); cout << "Nearest neighbour is column " << index << ":" << endl; cout << m.col(index) << endl; }
void test_eigen3() { test8(); }
|